YAN Chenglin


Prof. Dr. Chenglin YAN (c.yan@suda.edu.cn)

Education and Research Experiences:

1. Jan. 2014~current

Dean, College of Energy

Full professor, Soochow University, China 

2. July 2011 ~Dec. 2013

    Group Leader

    Head of research group: Nanomembranes for energy storage

    Institute for Integrative Nanosciences (IIN), Leibniz Institute for Solid State and Materials Research Dresden (IFW-  Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany 

3. March 2010 ~June 2011

     Humboldt Research Fellow (Germany)

     Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Saale), Germany  

4. October 2008 ~March 2010

     FQRNT Research Fellow (Canada)

   Joint appointements by Mcgill University & Université du Québec, Institut national de la recherche scientifique Énergie, Canada

 5. September 2003 ~October 2008

      Ph. D. student majored in Materials Science and Chemical Engineering

      Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, China


Honors and Awards

1. Young leading talents in science and technology innovation of the Ministry of science and technology, 2019

2. Excellent winner of NSFC Fund, 2016

3. Selected by “thousand young talents program”, 1000 plan of China, 2014

4. Research prize of IIN, Materials Research Dresden (IFW-Dresden), Germany, 2013

5. Alexander von Humboldt (AvH)-Foundation for postdoctoral fellowship (Alexander von Humboldt Foundation), Germany, 2010.

6. Le Fonds québécois de la recherche sur la nature et les technologies (FQRNT) for postdoctoral fellowship, 2009. (Canada, ranked 1st)

7. The third prize of Liaoning Province, China

8. Postdoctoral fellowship of FRSQ, 2009, Canada

9. Scholarship of Chinese Academy of Science, 2007.

10. Selected candidate for National Excellent PhD Thesis Developing Project of Dalian University of Technology, 2007.



Research Areas: Electrochemical energy storage, Lithium sulfur batteries, Lithium ion battery, Sodium ion batteries, Solid state battery, etc. 



Board Membership 

Science Journal of Chemistry (2014) J. Cryst. Phys. & Chem.(2008-2013)


Refereeing Activities

Nature serious, JACS, Angew Chem. Advanced Materials, Journal of Power Source, Electrochemistry Commnications, Advanced Energy Materials, Journal of Physical Chemistry, Chemistry of Materials, etc.



Publications

1. X.W. Shen, Y.T. Li, T. Qian, J. Liu, J.Q. Zhou, C. Yan*, J. B. Goodenough*, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nat. Comm., 2019, 10, 900.

2. C. Chen, J. Xiong, C. Yan*, Lithiophilic montmorillonite serves as lithium ion reservoir to facilitate uniform lithium deposition, Nat. Comm., 2019, 10, 4973.

3. M. Wang, T. Qian, C. Yan*, Over 56.55% Faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential, Nat. Comm., 2019, 10, 341.

4. S. Liu, T. Qian, C. Yan*, Facilitating nitrogen accessibility to boron-rich covalent organic frameworks via electrochemical excitation for efficient nitrogen fixation, Nat. Comm., 2019, 10, 3898.

5. J. Liu, T. Qian*, M. F. Wang, N. Xu, C. Yan*, The use of tween polymer to enhance the compatibility of Li/electrolyte interface for high performance and safety quasi-solid-state lithium sulfur battery, Nano Lett., 2018, 30, 1882.

6. X. F. Wang, Y. M. Xie, K. Tang, Q. Li, C. Wang, C. Yan*, Redox chemistry of molybdenum trioxide for ultrafast hydrogen-ion storage, Angew. Chem. Int. Ed., 2018, 36, 11596.

7. J. Zhou, T. Qian, J. Liu, C. Yan*, High safety all-solid-state lithium metal battery with high ionic conductivity thermoresponsive solid polymer electrolyte, Nano Lett., 2019, nl-2019-004507.

8. W. Chen, T.Y. Lei, W. Q. Lv, Y. Hu, Y.C. Yan, Y. Jiao, W. D. He, Z.H. Li, C. Yan*, J. Xiong*, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium-sulfur battery, Adv. Mater., 2018, 29, 201804084.

9. S.S. Liu, M.F. Wang, X.Y. Sun, N. Xu, J. Liu, Y.Z. Wang, T. Qian*, C. Yan*, Facilitated oxygen chemisorption in heteroatom-doped carbon for improved oxygen reaction activity in all-solid-state zinc-air batteries, Adv. Mater., 2018, 29, 1704898.

10. W. Chen, T. Y. Lei, T. Qian, W. Q. Lv, W. D. He, C. Y. Wu, X. J. Liu, J. Liu, B. Chen, C. Yan*, J. Xiong*, A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium sulfur battery, Adv. Energy Mater., 2018, 8, 1702889.

11. W. Chen, T.Y. Lei, C.Y. Wu, M. Deng, Y. C. Ma, L.P. Dai, W.Q. Lv, W.D. He, X.J. Liu, J. Xiong*, C. Yan*, Designing safe electrolyte system for high-stability lithium-sulfur battery, Adv. Energy Mater., 2018, 8, 1702348.

12. X.Y. Ni, T. Qian, X.J. Liu, N. Xu, J. Liu, C. Yan*, High lithium ion conductivity LiF/GO solid electrolyte interphase inhibiting the shuttle of lithium polysulfides for long-life Li-S battery, Adv. Funct. Mater., 2018, 28, 1706513.

13. X.G. Wang, Q.C. Li, L. Zhang*, Z.L. Hu, L.H. Yu, T. Jiang, C. Lu, C. Yan, J. Y. Sun, Z.F. Liu, Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors, Adv. Mater., 2018, 27, 1800963.

14. L. Liu, Y. Chen*, Y.H. Xie, P. Tao, Q.Y. Li, C. Yan*, Understanding of the ultrastable K-ion storage of carbonaceous anode, Adv. Funct. Mater., 2018, 29, 1801989.

15. Q. Li, X.F. Wang*, K. Tang, M.F. Wang, C. Wang, C. Yan*, Electronic modulation of electrocatalytically active center of Cu7S4 nanodisks by cobalt-doping for highly efficient oxygen evolution reaction, ACS Nano, 2017, 11, 12230.

16. K. Tang, X.F. Wang*, Q. Li, C. Yan*, High edge selectivity of in situ electrochemical Pt deposition on edge-rich layered WS2 nanosheets, Adv. Mater., 2017, 29, 1704779.

17. X. J. Liu, N. Xu, T. Qian*, J. Liu, X.W. Shen, C. Yan*, High Coulumbic efficiency and high-rate capability lithium sulfur batteries with low-solubility lithium polysulfides by using alkylene radicals to covalently connect sulfur, Nano Energy, 2017, 41, 758.

18. J. Liu, T. Qian*, M.F. Wang, X.J. Liu, N. Xu, Y.Z. You, C. Yan*, Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery, Nano Lett., 2017, 17, 5064.

19. Y. H. Xie, Y. Chen*, L. Liu, P. Tao, M.P. Fan, N. Xu, X.W. Shen, C. Yan*, Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications, Adv. Mater., 2017, 29, 1702268.

20. J. Q. Zhou, T. Qian*, N. Xu, M.F. Wang, X.Y. Ni, X.J. Liu, X.W. Shen, C. Yan*, Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and coulombic efficiency, Adv. Mater., 2017, 29, 1701294.

21. W. Chen, T. Qian, J. Xiong*, N. Xu, X. J. Liu, J. Liu, J. Q. Zhou, X. W. Shen, T. Z. Yang, Y. Chen, C. Yan*, A new type of multifunctional polar binder: toward practical application of high energy lithium sulfur batteries, Adv. Mater., 2017, 29, 1605160.

22. N. Xu, T. Qian*, X.J. Liu, J. Liu, Y. Chen, C. Yan*, Greatly suppressed shuttle effect for improved lithium sulfur battery performance through the short chain intermediates, Nano Lett., 2017, 17, 538.

23. X.J. Liu, N. Xu, T. Qian*, J. Liu, X.W. Shen, C. Yan*, Preventing polysulfide dissolution for lithium-sulfur batteries by stabilized lithium-sulfur batteries by covalently binding sulfur onto the thiol-terminated polymeric matrices, Small, 2017, 1702104.

24. T.Y. Lei, Y.M. Xie, X. F. Wang, S.Y. Miao, J. Xiong*, C. Yan*, TiO2 feather duster as effective polysulfides restrictor for enhanced electrochemical kinetics in lithium-sulfur batteries, Small, 2017, 1701013.

25. X.F. Wang, Y. Chen, O. Schmidt, C. Yan*, Engineered nanomembranes for **art energy storage devices, Chem. Soc. Rev., 2016, 45, 1308.

26. T.Z. Yang, T. Qian*, M.F. Wang, X.W. Shen, N. Xu, Z.Z. Sun, C. Yan*, A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries, Adv. Mater., 2016, 28, 539.  

27. M. P. Fan, Y. Chen*, Y. H. Xie, T. Z. Yang, X. W. Shen, N. Xu, H. Y. Yu, C. Yan*, Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes, Adv. Funct. Mater., 2016, 26, 5019.

28. M. Melzer, J. I. Monch, D. Makarov, Y. Zabila, C. Bermudez, G. Santiago, D. Karnaushenko, S. Baunack, F. Bahr, C. Yan, M. Kaltenbrunner O. G. Schmidt, Wearable magnetic field sensors for flexible electronics, Adv. Mater., 2015, 27, 1274.

29. X. H. Liu*, J. Zhang, W. P. Si, L. X. Xi, B. Eichler, C. Yan*, O. Schmidt, Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life, ACS Nano, 2015, 9, 1198. 

30. X. Y. Lu*, J. W. Deng, W. P. Si, X. L. Sun, X. H. Liu, B. Liu, L. F. Liu, S. Oswald, S. Baunack, H. J. Grafe, C. Yan*, O. G. Schmidt, High-performance Li-O2 batteries with trilayered Pd/MnOx/Pd nanomembranes, Adv. Sci., 2015, 2, 1500113.

31. Y. Chen, L. F. Liu, J. Xiong*, T. Z. Yang, Y. Qin, C. Yan*, Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries, Adv. Funct. Mater., 2015, 25, 6701.

32. W. Si*, I. Moench, C. Yan*, O. Schmidt, A single rolled-up Si tube battery for the study of electrochemical kinetics, electrical conductivity, and structural integrity, Adv. Mater., 2014, 26, 7973.

33. L. Zhang*, J. Deng, L. Liu, W. Si, C. Yan*, O. Schmidt, Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries, Adv. Mater., 2014, 26, 4527.

34. X. Li, C. Yan*, J. Wang, A. Graff, S. Schweizer, A. Sprafke, O. Schmidt, Ralf B. Wehrspohn*, Stable silicon anodes for lithium-ion batteries using mesoporous metallurgical silicon, Adv. Energy Mater., 2014, 4, 1401556.

35. X. Sun, C. Yan*, O. Schmidt, Three-dimensionally “curved” NiO nanomembranes as ultra-high rate capability anodes for Li-ion batteries with long cycle life, Adv. Energy Mater., 2014, 4, 1300912.

36. J. Ni*, Y. Zhao, T. Liu, H. Zheng, L. Gao, C. Yan*, Strongly coupled Bi2S3@CNT hybrids for robust lithium storage, Adv. Energy Mater., 2014, 4, 798.

37. D. Karnaushenko, D. Makarov, C. Yan, O. Schmidt, Printable giant magnetoresistive devices, Adv. Mater., 2012, 24, 4518.

38. J. Zhou, H. Ji, J. Liu, T. Qian*, C. Yan*, A new high ionic conductive gel polymer electrolyte enables highly stable Quasi-solid-state lithium sulfur battery, Energy Storage Materials, 2019, doi.org/10.1016.

39. C Yan*, X Li, K. Zhou, Heteroepitaxial growth of GaSb nanotrees with an ultra-low reflectivity in a broad spectral range, Nano Lett., 2012, 12, 1799.

40. X. Liu, T. Qian*, J. Liu, M. Wang, H. Chen, C Yan*, High Coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery, Energy Storage Materials, 2018, 17, 260.

41. C. Yan, A. Dadvand, F. Rosei*, Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures, J. Am. Chem. Soc., 2010, 132, 8868.

42. C. Yan, L. Nikolova, A. Dadvand, F. Rosei*, Multiple NaNbO3/Nb2O5 heterostructure nanotubes: local ferroelectric response and electric properties investigation, Adv. Mater., 2010, 22, 1741.

43. K. Shi, X. Liu, Y. Wei, C. Yan*, B. Li, Q. Yang, Y, He*, LiNi0.8Co0.15Al0.05O2 as both a trapper and accelerator of polysulfides for lithium-sulfur batteries, Energy Storage Materials, 2018, 17, 111.

44. J. Liu, M. Wang, N. Xu, T. Qian*, C. Yan*, Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries, Energy Storage Materials, 2018, 15, 53.

45. C. Yan, D. Xue*, Formation of Nb2O5 nanotube arrays through phase transformation, Adv, Mater., 2008, 20, 1055.

46. X. Sun, W. Si, X. Liu, C. Yan*, Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries, Nano Energy, 2014, 9, 168.

47. W. Si, C. Yan*, Y. Chen, S. Oswald, L. Han, and O. Schmidt, On chip, all solid-state and flexible micro-supercapacitors with high performance based on MnOx/Au multilayers, Energy Environ. Sci., 2013, 6, 3218.

48. C. Yan*, W. Xi, W. Si, O. Schmidt, Highly conductive and strain released hybrid multilayer Ge/Ti nanomembranes with remarkably enhanced lithium ion storage capability, Adv. Mater., 2013, 25, 539.

49. Y. Yu,* C. Yan*, L. Gu, O. Schmidt, J. Maier. Three-dimensional (3D) bicontinuous Au/amorphous-Ge thin films as fast and high-capacity anodes for lithium ion batteries, Adv. Energy Mater., 2013, 3, 281.

50. J. Deng*, C. Yan*, O. Schmidt, Sandwich-stacked SnO2/Cu hybrid nanosheets as multi-channel anodes for lithium ion batteries, ACS Nano, 2013, 7, 6948.

51. Y. Chen, C. Yan*, O. Schmidt, Strain-driven formation of multilayer graphene/GeO2 tubular nanostructures as high-capacity and very long-life anodes for lithium-ion batteries, Adv. Energy Mater., 2013, 3, 1269.

52. 50) J. Deng, H. Ji, C. Yan*, O. Schmidt, Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium ion batteries with remarkable cycling performance, Angew. Chem. Int. Ed., 2013, 125, 2382.

53. Yan Chenglin; Xi Wang; Si Wenping, Schmidt Oliver G, Highly Conductive and Strain Released Hybrid Multilayer Ge/Ti Nanomembranes with Remarkably Enhanced Lithium Ion Storage Capability, Advanced Materials, 2013, 25, 539-544.   

54. Deng Junwen; Ji Hengxing; Yan Chenglin, Schmidt Oliver G, Naturally Rolled-up C/Si/C Trilayer Nanomembranes as Stable Anodes for Lithium Ion Batteries with Remarkable Cycling Performance, Angewandte Chemie - International Edition, 2013, 125, 2382-2330.   

55. Yan Chenglin; Dadvand Afshin; Rosei Federico, Near-IR Photoresponse in New Up-Converting CdSe/NaYF4:Yb,Er Nanoheterostructures, J. Am. Chem. Soc., 2010, 132, 8868-8869.  

56. Yan Chenglin; Nikolova Liya; Dadvand Afshin, Multiple NaNbO3/Nb2O5 Heterostructure Nanotubes: Local Ferroelectric Response and Electric Properties investigation, Advanced Materials, 2010, 22, 1741-1745.  

57. Karnaushenko Daniil; Makarov Denys; Yan Chenglin, Printable Giant Magnetoresistive Devices, Advanced Materials, 2012, 24, 4518-4522.   

58. Yan Chenglin; Xue Dongfeng, Formation of Nb2O5 Nanotube Arrays Through Phase Transformation, Advanced Materials, 2008, 20, 1055-1058.

59. Melzer Michael; Monch Jens Ingolf; Yan Chenglin, Wearable magnetic field sensors for flexible electronics, Advanced Materials, 2015, 27, 1274-1280. 

60. Lu Xueyi, Yan Chenglin, High-Performance Li-O2 Batteries with Trilayered Pd/MnOx/Pd Nanomembranes, ADVANCED SCIENCE, 2015, DOI: 10.1002/advs.201500113. 

61. Yan Chenglin; Li Xiaopeng; Zhou Keyan, Heteroepitaxial Growth of GaSb Nanotrees with an Ultra-Low Reflectivity in a Broad Spectral Range, Nano Letters, 2012, 12, 1799-1805. 

62. Yu Yan; Yan Chenglin; Gu Lin, Three-dimensional (3D) Bicontinuous Au/amorphous-Ge Thin Films as Fast and High-Capacity Anodes for Lithium ion Batteries, Advanced Energy Materials, 2013, 3, 281-285. 

63. Sun Xiaolei; Yan Chenglin, et al., Three-Dimensionally “Curved” NiO Nanomembranes as Ultra-High Rate Capability Anodes for Li-ion Batteries with Long Cycle Life, Advanced Energy Materials, 2014, 4, 1300912-1300916. 

64. Chen Yao; Yan Chenglin; Schmidt Oliver G, Strain-Driven Formation of Multilayer Graphene/GeO2 Tubular Nanostructures as High-Capacity and Very Long-Life Anodes for Lithium-Ion Batteries, Advanced Energy Materials, 2013, 3, 1269-1274. 

65. Ni Jiangfeng, Zhao Yang, Liu Tingting, Zheng Honghe, Gao Lijun, Yan Chenglin, et al., Strongly Coupled Bi2S3@CNT Hybrids for Robust Lithium Storage, Advanced Energy Materials, 2014, 4, 798.   

66. Li Xiaopeng; Yan Chenglin, et al., Stable Silicon Anodes for Lithium-Ion Batteries Using Mesoporous Metallurgical Silicon, Advanced Energy Materials, 2015, 4, 1556. 

67. Deng Junwen; Yan Chenglin, et al., Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multi-Channel Anodes for Lithium Ion Batteries, ACS Nano, 2013, 7, 6948-6954.

68. Si Wenping; Yan Chenglin, On Chip, All Solid-State and Flexible Microsupercapacitors with High Performance Based on MnOx/Au Multilayers, Energy & Environment Science, 2013, 6, 3218-3223. 

69. Sun Xiaolei; Si Wenping; Liu Xianghong; Yan Chenglin, Multifunctional Ni/NiO hybrid nanomembranes as anode materials for high-rate Li-ion batteries, Nano Energy, 2014, 9, 168-175. 

70. Qian Tao; Xu Na; Zhou Jingqiu; Yan Chenglin, Interconnected Three-Dimensional V2O5/PolypyrroleNetwork Nanostructures for High Performance Solid-State Supercapacitors, Journal of Materials Chemistry A, 2015, 3, 488-493. 

71. Liu Xianghong, Si Wenping, Yan Chenglin, Free-standing Fe2O3 nanomembranes enabling ultra-long cycling life and high rate capability for Li-ion batteries, Scientific Reports, 2014, 4, 7452-7459.   

72. Ding Liping; He Shulian; Miao Shiding; Yan Chenglin, Ultra**all SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage, Scientific Reports, 2014, 4, 4647-4655.   

73. Rümmeli Mark; Zeng Mengfan; Yan Chenglin, Insights in to the Early Growth of Homogeneous Single-Layer Graphene over Ni-Mo binary substrates, Chemistry of Materials, 2013, 25, 3880-3887. 

74. Lu Xueyi, Yan Chenglin, et al., Curly MnOx nanomembranes as cathode materials for rechargeable lithium-oxygen battery systems, JOURNAL OF POWER SOURCES, 2015, 295, 197.

75. Liu Xuejun, Yan Chenglin, et al., Preparation of on chip, flexible supercapacitor with high performance based on electrophoretic deposition of reduced graphene oxide/polypyrrole composites, CARBON, 2015, 92, 348-353.

76. Sun Xiaolei, Yan Chenglin, et al., In Situ-Formed, Amorphous, Oxygen-Enabled Germanium Anode with Robust Cycle Life for Reversible Lithium Storage, CHEMELECTROCHEM, 2015, 2, 737-742. 

77. Li Xiaopeng; Xiao Yanjun; Yan Chenglin, Influence of the Mobility of Pt Nanoparticles on the Anisotropic Etching Properties of Silicon, Ecs Solid State Letters, 2013, 2, p22-P26. 

78. Yan Chenglin; Xue Dongfeng, Electroless deposition of aligned ZnO taper-tubes in a strong acidic medium, Electrochemistry Communications, 2007, 9, 1247-1251.   

79. Si Wenping; Sun Xiaolei; Liu Xianghong; Yan Chenglin, High areal capacity, micrometer-scale amorphous Si film anode based on nanostructured Cu foil for Li-ion batteries, J. Power Source, 2014, 267, 629-634.   

80. Lin Gungun; Makarov Denys; Yan Chenglin, A highly flexible and compact magnetoresistive ****ytic device, Lab on a Chip, 2014, 14, 2050-4058.   

81. Li Xiaopeng; Xiao Yanjun; Yan Chenglin, Self-purification model for metal-assisted chemical etching of metallurgical silicon, Electrochimica Acta, 2014, 138, 476-480.   

82. Zeng Fanyan; Kuang Yafei; Yan Chenglin, et al., Multilayer Super Short Carbon Nanotube/Reduced Graphene Oxide Architecture for Enhanced Supercapacitor Properties, Journal of Power Sources, 2014, 247, 396-401.   

83. Liu Xianghong; Zhang Jun; Si Wenping; Yan Chenglin, High-rate amorphous SnO2 nanomembrane anodes for Li-ion batteries with long cycling life, Nanoscale, 2015, 7, 282-288.   

84. Yan Chenglin; Rosei Federico, Ion replacement reaction for the synthesis of inorganic hollow materials, New Journal of Chemistry, 2014, 38, 1883-1904.   

85. Li Xiaopeng; Xiao Yanjun; Yan Chenglin, Fast Electroless Fabrication of Uniform Mesoporous Silicon Layers, Electrochimica Acta, 2013, 94, 57-61.   

86. Yan Chenglin; Xue Dongfeng, Conversion of ZnOnanorod arrays into ZnO/ZnSnanocable and ZnS nanotube arrays via an in situ chemistry strategy, Journal of Physical Chemistry B, 2006, 110, 25850-25855.   

87. Yan Chenglin; Xue Dongfeng, morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide, Journal of Physical Chemistry B, 2006, 110, 11076-11080. 

88. Yan Chenglin; Xue Dongfeng, Surface Fabrication of Nanostructured Thin Films: A Top-Down Chemical Strategy, Journal of Nanoscience and nanotechnology, 2010, 10, 4725-4728. 

89. Yan Chenglin; Zou Longjiang; Xu Jiasheng, Chemical strategy for tuning the surface microstructures of particles, Powder Technology, 2009, 183, 2-9.   

90. Yan Chenglin; Xue Dongfeng, A modified electroless deposition route todendritic Cu metal nanostructures, Crystal Growth & Design, 2008, 8, 1849-1854.   

91. Yan Chenglin; Liu Jun; Liu Fei, Tube Formation in Nanoscale Materials, Nanoscale Research Letters, 2008, 3, 473-480.   

92. Yan Chenglin; Xue Dongfeng, Solution growth of nano- to microscopic ZnO on Zn, Journal of Crystal Growth, 2008, 310, 1836-1840.   

93. Yan Chenglin; Sun Congting; Si Yunfei, Surface fabrication of oxides via solution chemistry, Journal of Crystal Growth, 2008, 310, 1708-1712.   

94. Yan Chenglin; Xue Dongfeng, Designed template synthesis of novel semiconductor materials with hollow structures, Functional Materials Letters, 2008, 1, 37-42.   

95. Yan Chenglin; Xue Dongfeng; Zou Longjiang, Chemical tuning polymorphology of functional materials by hydrothermal and solvothermal reactions, Journal of Materials Science, 2008, 43, 2263-2269.   

96. Yan Chenglin; Xue Dongfeng; Zou Longjiang, A solution-phase approach to the chemical synthesis of ZnO nanostructures via a low-temperature route, Journal of Alloys and Compounds, 2008, 453, 87-92.   

97. Zhao Xu; Ren Xiu; Yan Chenglin, Morphology evolution at nano-to micro-scale, Functional Materials Letters, 2008, 1, 167-172.   

98. Liu Fei; Sun Congting; Yan Chenglin, Solution-based chemical strategies to purposelycontrol the microstructure of Functional Materials, Journal of Materials Science & Technology, 2008, 24, 641-648.   

99. Yan Chenglin; Xue Dongfeng, Polyhedral construction of hollow ZnO microspheres by CO2 bubble templates, Journal of Alloys and Compounds, 2007, 431, 241-245.   

100. Yan Chenglin; Xue Dongfeng, Mild solution-based fabrication of high-quality device-dependent ZnO nanoarrays and ZnS nanotubearrays, Physica Scripta, 2007, T129, 288-292.   

101. Yan Chenglin; Xue Dongfeng; Zou Longjiang, Fabrication of hexagonal MgO and its precursors by a homogeneous precipitation method, Materials Research Bulletin, 2006, 41, 2341-2348. 

102. Wang Xiaoli; Yan Chenglin, Chemical preparation of MgO whiskers, International Journal of Nanoscience, 2006, 5, 219-223.   

103. Xu Jiasheng; Xue Dongfeng; Yan Chenglin, Chemical synthesis of NaTaO3 powder at low-temperature, Materials Letters, 2005, 5923):2920-2922.   

104. Yan Chenglin; Xue Dongfeng; Zou Longjiang, Preparation of magnesium hydroxide nanoflowers, Journal of Crystal Growth, 2005, 282, 448-454.   

105. Yan Chenglin; Xue Dongfeng, Room temperature fabrication of hollow ZnS and ZnO architectures by a sacrificial template route, Journal of Physical Chemistry B, 2006, 110, 7102-7106. 

106. Yan Chenglin; Xue Dongfeng, General, spontaneous ion replacement reaction for the synthesis of micro- and nanostructured metal oxides, Journal of Physical Chemistry B, 2006, 110, 1581-1586.   

107. Yan Chenglin; Xue Dongfeng, Novel self-assembled MgO nanosheet and its precursors, Journal of Physical Chemistry B, 2005, 109, 12358-12361.  

108. Zhou Jinqiu, Yan Chenglin, Nanomeshes of highly crystalline nitrogen-doped carbon encapsulated Fe/Fe3C electrodes as ultrafast and stable anodes for Li-ion batteries, Journal of Materials Chemistry A, 2015, 3, 15008-15014.

109. Yang Tingzhou; Qian Tao; Wang Mengfan; Liu Jie, Yan Chenglin, A new approach towards the synthesis of nitrogen-doped graphene/MnO2 hybrids for ultralong cycle-life lithium ion batteries, Journal of Materials Chemistry A, 2015, 2: DOI: 10.1039/C4TA072.  

110. Qian Tao, Yan Chenglin, On-Chip Supercapacitors with Ultrahigh Volumetric Performance Based on Electrochemically Co-Deposited CuO/Polypyrrole Nanosheet Arrays, Nanotechnology, 2015, NANO-107633.R1.

 




Baidu
sogou